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Abstract

Background—A hemizygous deletion of 1.5–3 Mb in 22q11.2 causes a distinct clinical 

syndrome with variable congenital defects. Current diagnostic methods use fluorescent in situ 

hybridization (FISH) or comparative genomic hybridization by microarray to detect the deletion. 

Neither method is suitable for newborn screening (NBS), since they cannot be performed on dried 

blood spots (DBS). We developed a MALDI-TOF-MS assay that uses DBS to measure the 

hemizygous deletion of UFD1L, located within the 22q11.2 region.

Methods—We used DBS from 54 affected patients, previously tested by FISH or microarray, and 

100 cord blood samples to evaluate the performance of the MALDI-TOF-MS assay. With a single 

primer pair, a 97-base oligonucleotide within UFD1L was amplified, as was a sequence on 

chromosome 18 that differs by 2 nucleotides. A multiplexed, single-base extension reaction 

created allele-specific products for MALDI-TOF-MS detection. The products were spotted onto a 

silicon chip, and the height of the spectral peaks identified the relative amounts of target and 

reference gene.
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Results—The median ratio of the spectral peak for each UFD1L target: reference base was 0.96 

and 0.99 for controls, compared with 0.35 and 0.53 for 22q11 deletion syndrome patients. There 

was 100% concordance between FISH/micro array and MALDI-TOF-MS in all patients with 

22q11.2 deletion syndrome.

Conclusions—This method can be reliably performed with DBS and is suitable for high sample 

throughput. This assay may be considered for use in population-based NBS for 22q11.2 deletion.

Newborn screening (NBS)4 for severe combined immunodeficiency (SCID), with 

quantitative PCR to detect severe T cell lymphopenia, has been implemented in >30 states 

(1). Many infants with pathologic T cell receptor excision circles on NBS and T cell 

lymphopenia on flow cytometry will have a hemizygous deletion in chromosome 22q11 (2–

5). The 22q11.2 deletion syndrome (22q11DS), also called velocardial facial syndrome and 

DiGeorge syndrome, is the most common microdeletion syndrome in humans, with an 

estimated prevalence of 1 in 3000–4000 live births (6, 7). Many infants are diagnosed 

prenatally or at birth by the presence of a cardiac defect; others may not be diagnosed until 

the second decade of life because of the highly variable clinical phenotype. Some degree of 

T cell lymphopenia due to hypoplasia or aplasia of the thymus gland affects ≤80% of 

patients (8–10).

In velocardial facial syndrome/DiGeorge syndrome, most individuals (approximately 90%) 

have a 3-million-base-pair (3 Mb, or 3 megabase) de novo deletion on 1 allele at 

chromosome 22q11, and another 7% have a smaller deletion of 1.5 Mb, which overlaps the 

proximal end of the larger deleted region (11). Current diagnostic tools include fluorescent 

in situ hybridization (FISH), by use of a probe for HIRA (histone cell cycle regulator, 

formerly TUPLE1)5 located within the common deleted region, or a genome-wide 

comparative genomic hybridization assay that detects microdeletions of >50 kb (12). 

Genomic single nucleotide polymorphism arrays can also identify copy number variations in 

the 22q11.2 gene (13, 14). These assays require whole blood and are labor intensive and 

expensive to perform. In contrast, quantitative real-time PCR to detect low or absent T cell 

receptor excision circle copy numbers can be performed on newborn dried blood spots 

(DBS) (4, 15). Among 3 030 083 infants screened, 29% of infants with pathologic SCID 

NBS were diagnosed with a non-SCID primary lymphopenia caused by 22q11DS (16). The 

majority of patients with 22q11DS will have mild T cell lymphopenia at birth and will not 

be identified through screening for SCID.

Early diagnosis of all affected infants through NBS would permit identification and 

intervention before potentially life-threatening complications can occur and would improve 

access to care and services for these children. Professional groups and families of children 

with 22q11DS have advocated adding NBS for this deletion to the recommended panel (17).

4Nonstandard abbreviations: NBS, newborn screening; SCID, severe combined immunodeficiency; 22q11DS, 22q11.2 deletion 
syndrome; Mb, megabase; FISH, fluorescent in situ hybridization; DBS, dried blood spots; CB-DBS, cord blood DBS; SND, single 
nucleotide difference; MS, mass spectrometry
5Human genes: HIRA, histone cell cycle regulator;UFD1L, ubiquitin fusion degradation 1 like (yeast); ZNF74, zinc finger protein 74; 
CFTR, cystic fibrosis transmembrane conductance regulator (ATP-binding cassette subfamily C, member 7)
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Other PCR methods that use DNA extracted from whole blood or cell lines, including real-

time quantitative PCR, quantitative interspecies competitive PCR, competitive fluorescent 

multiplex short tandem repeat polymorphism assay, and multiplex ligation-dependent probe 

amplification, have been shown to identify the hemizygous deletion of 22q11.2 compared 

with a reference gene (18–25). These approaches require complex algorithms to compensate 

for variable amplification efficiency of the reference and target sequences, which could 

introduce imprecision and affect interpretation of results. Here we describe the development 

of a novel assay for newborn screening of 22q11.2DS on DBS samples that combines PCR 

and MALDI-TOF-MS to identify hemizygous deletion of a gene located within the 22q11.2 

common deleted region.

Participants and Methods

Participants

We collected whole blood in EDTA tubes from 54 patients with 22q11DS diagnosed 

previously by FISH or comparative genomic hybridization microarray. All patients gave 

informed consent to the institutional review board–approved protocol at Emory University. 

To prepare DBS, 100 μL whole blood was spotted on Guthrie cards, air-dried for at least 3 h, 

and kept at −20 °C in a sealed plastic bag with desiccant packs and a humidity card. We 

prepared control DBS samples from anonymous cord blood samples (CB-DBS) and 

unaffected parents of patients in the 22q11DS clinic.

Selection Of Pcr Targets

For the 22q11.2 target, we chose UFD1L [ubiquitin fusion degradation 1 like (yeast)], which 

is located in the common deleted region of chromosome 22. Potential internal reference 

candidate genes were identified by searching human DNA with GenBlast (26) for regions 

containing sequences of 90–150 nucleotides with extensive homology to UFD1L. A region 

with 90% homology was located in an intergenic region on chromosome 18 (27); this 97-

nucleotide sequence differs by only 2 bases from the target UFD1L sequence (Table 1). No 

other homologous regions were identified within the human genome database. Forward and 

reverse primers (Table 1), which could amplify both the target and reference sequences, 

were designed with Primer Express v2.0 (Applied Biosystems). Primer specificity was 

checked on the University of California Santa Cruz Genome Bioinformatics in silico PCR 

(28). We added a 10mer segment (AGGATGAAGC) at the 5′ end of the primer sequences 

to increase the mass of the primers and prevent interference with spectrometric measurement 

of the final products.

Quantification By Maldi-Tof-Ms

The 97-bp product from the first PCR reaction served as the template for the extension PCR. 

We multiplexed 2 separate 17-base extension primers, each ending just before a single 

nucleotide difference (SND) that distinguished the target UFD1L (chr22) amplicon from the 

internal reference (chr18) amplicon (Table 1). The first SND was a C>T change (SND*1); 

the second was a C>A change (SND*2). The 18-base extension products were 

distinguishable by their unique masses measurable by mass spectrometry (MS) (Table 1). 

The use of mass-modified dideoxy nucleotide terminators (Agena Bioscience), included in 
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the reaction mixture, truncated the extension reaction after the addition of 1 base. The 

relative quantity of the products was represented by the height of the spectral peaks at the 

expected mass.

We used 2 extension primers in a multiplex reaction to generate 2 independent sets of 

extension products (Table 1). This was intended to provide corroborating results.

PCR

After preliminary studies for optimization, the following protocol was found to produce 

reliable and reproducible results. Genomic target and reference sequences were amplified 

directly from the DBS punches. DBS 2.0-mm discs were punched into individual PCR tubes 

in a 96-well plate. Each sample was washed once with 100 μL DNA purification solution 

(Qiagen) with shaking (1500 rpm) for 10 min at room temperature. After removing the wash 

buffer, the disc was washed with 100 μL DNA elution buffer for 10 min. The buffer was 

discarded, and a PCR reaction mix containing PCR buffer (Agena Bio-science), MgCl2 (2 

mmol/L), dNTP mix (500 μmol/L), hot start Taq polymerase (0.5 U) (Agena), and forward 

and reverse primers (800 μmol/L) in a final volume of 15 μL was added to each tube. PCR 

amplification was performed in a Bio-Rad C1000 thermocycler, starting with DNA 

denaturation at 94 °C for 10 min, followed by 45 cycles of amplification consisting of 30 s at 

94 °C, 30 s at 60 °C, and 30 s at 72 °C. The final incubation was at 72 °C for 5 min. After 

PCR, the reaction products were stored at 4 °C or used immediately for the reaction to 

generate extension products for MALDI-TOF-MS analysis.

Single Base Extension

To generate the extension products, we transferred 5 μL of each sample (primary PCR 

product) to an individual well in a 384-well plate. Unincorporated dNTP and primers from 

the PCR reaction were removed by incubating with 0.5 U shrimp alkaline phosphatase at 

37 °C for 40 min, then at 85 °C for 5 min. We added 2 μL extension reaction mix, containing 

PCR buffer, polymerase enzyme, mass-modified ddNTP terminators (iPLEX reagents, 

Agena Bioscience), and extension primers (1.04 μmol/L), to each well. The plate was sealed, 

placed in a thermocycler, and heated at 94 °C for 30 s to denature the DNA in the sample. 

The thermocycler program used 2 loops: heating to 94 ° C for 5 s to denature the DNA, then 

a set of 5 cycles of 52 °C for 5 s and 80 ° C for 5 s for annealing and extension. These 2 

loops were repeated for 40 cycles so that 200 short cycles were completed. The final 

extension step was 72 °C for 3 min.

The reaction products were desalted by mixing with 16 μL water and 6 mg ion-exchange 

resin (Agena Bioscience) for 30 min. The plates were centrifuged for 5 min at 2000g to 

pellet the resin to the bottom of the tubes. We used a robotic benchtop nanodispenser (Agena 

Bioscience) to transfer 20 nL supernatant sample to individual pads on a 384-element silicon 

chip matrix (SpectroCHIP®).

Maldi-Tof Analysis

The samples on the SpectroChip were analyzed on the MSArray workstation (Agena 

Bioscience) (29) with a MALDI-TOF mass spectrometer (MassArray analyzer compact, 

Kobrynski et al. Page 4

Clin Chem. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Agena Bioscience) containing a Class I nitrogen laser emitting 40–90 microjoules at 337 

nm. A calibration spectrum was acquired for each chip with the 3-point calibrators provided 

with the system. Spectral measurements were acquired for the center and 4 other positions 

around each matrix pad. We used MassArray Typer4.0 (Agena Bioscience) software to 

analyze the data from the spectral peaks to determine the genotyping call for each sample.

Results

MALDI-TOF-MS analysis generated results in a spectrogram providing signal peaks 

arranged by oligonucleotide mass, with signal intensity data. The assay was able to 

discriminate between spectral peaks representing sequences that differed by ≥14 Da. All of 

the tested samples from 22q11.2DS patients and unaffected controls exhibited 4 distinct 

peaks, located at the expected mass of the 4 extension products (Fig. 1). The masses of the 

extension oligonucleotides from the target sequences (UFD1L on chromosome 22) were 

5513 Da for SND*1 and 5530 Da for SND*2 (Table 1). Those from the internal-reference 

sequences (on chromosome 18) were 5593 Da for SND*1 and 5554 Da for SND*2. For each 

sample, the ratio of the peak intensities for each SND from the target 22q11.2 sequence on 

chromosome 22 to that of the reference sequence on chromosome 18 (representing 2 copies 

per cell) was used. A ratio close to 1.0 was expected from healthy (2N) controls, whereas a 

ratio close to 0.5 would indicate a hemizygous deletion (1N).

Initial experiments with 2 separate cohorts, 10 CB-DBS and 10 22q11DS DBS, 

demonstrated good internal consistency. The median (SD) ratio of peak signal intensity for 

SND*1 was 1.06 (0.07) for the first cohort and 1.15 (0.12) for the second cohort of cord 

blood controls; the ratios of target: reference sequence peak signal intensity were 

significantly different (P < 0.001) at 0.55 (0.01) and 0.6 (0.04) for 2 groups of affected 

patients. Similarly, the SND*2 median ratios (SD) of peak intensity were 0.98 (0.06) and 

0.89 (0.03) for controls and 0.56 (0.06) and 0.51 (0.03) for 22q11DS samples (Fig. 2). There 

was no overlap between the signal ratio for any sample from the control and 22q11DS 

groups. Subsequent experiments demonstrated some variation in the peak intensity between 

runs, with the median peak ratio 1.06–1.45 for controls and 0.56 – 0.88 for 22q11DS 

samples. However, the signal ratio for controls was significantly different from 22q11DS 

samples, without overlap (P < 0.001) within any run.

To evaluate the validity of the assay in a larger sample size, we tested 100 additional CB-

DBS samples and 54 DBS from 22q11DS patients. Fig. 3 shows the ratios of signal intensity 

between UFD1L and the reference gene on chr18 for each SND, reflecting the relative gene 

copy number. The ratio values were normalized to 1.0 with a set of 4 standard samples that 

were run in each experiment to compensate for signal drift between runs. In the CB-DBS 

(with 2 copies of target sequence), the median ratio was 0.96 for SND*1 and 0.99 for 

SND*2. For the 22q11DS patients (1 copy of target sequence), it was 0.36 for SND* 1 and 

0.53 for SND* 2. A cutoff value of 0.7 showed 100% diagnostic sensitivity and specificity, 

correctly identifying all patients with the deletion. None of the control samples were outside 

the reference range.
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Discussion

Multiplex competitive PCR with MALDI-TOF can measure copy number variation at 

multiple loci over a wide mass range, with as little as 20 ng DNA (30). Our report describes 

the application of MALDI-TOF-MS to detect the hemizygous deletion in 22q11.2 by use of 

DNA extracted from DBS. The established MALDI-TOF-MS approach for analysis of gene 

copy number (iPLEX assay, Sequenom) is based on competitive PCR with an external 

synthetic oligonucleotide competitor that is nearly identical to the target (30). It requires 

multiple concentrations of the competitor for each sample (thus multiple tests), since the 

optimal concentration is usually unknown and may vary from sample to sample. The assay 

result in copy concentration must be converted to copies per cell, usually through 

logarithmic transformation or linear regression on the basis of the DNA concentration of the 

competitor. The critical modification in our assay is the use of an internal genomic sequence 

as the competitor, which assures that the ratio of competitor to target is naturally within 

optimal range (2:1 for hemizygous deletion, 1N; 2:2 for no deletion, 2N), regardless of the 

variable amount of host DNA that may be in the sample DBS. The result does not need 

complicated conversion because it is normalized to the internal genomic reference sequence, 

which is always present in 2 copies per cell.

In theory, the assay could be further expanded by use of additional targets in a multiplex 

format to distinguish the smaller 1.5-Mb deletions from the more common 3.5-Mb deletion. 

One possible candidate is ZNF74 (zinc finger protein 74) located outside the 1.5-Mb deleted 

region. In a preliminary experiment, a sample obtained from a patient with the 1.5-Mb 

deletion was found to produce a ratio of peak intensity of 0.55 for UFD1L but 1.0 for 

ZNF74. This result agreed with the diagnostic chromosomal microarray assay showing that 

the deletion was 1.5 Mb in size and that ZNF74 was not affected in this patient.

Other advantages are associated with this design of MALDI-TOF-MS assay that uses an 

internal competitor. It requires a small amount of DNA (a 2-mm DBS punch yields 

approximately 100 ng DNA (31)); it requires a single set of PCR and extension primers for 

both target and reference genes, ensuring equal amplification efficiency; and detection of the 

product does not require the use of an oligonucleotide fluorescent reporter probe. Up to 384 

samples could be run on a single chip, allowing high throughput. Robotic automated 

operation with liquid handlers and droplet dispensers at the pre- and post-PCR processes 

could greatly reduce the manpower needed to perform this assay.

The excellent resolution of MS allows a very high level of assay multiplexing, which can 

occur at the PCR stage or after PCR by combining products from multiple PCR reaction 

tubes for MALDI-TOF-MS analysis. Use of MALDI-TOF-MS analysis of CFTR [cystic 

fibrosis transmembrane conductance regulator (ATP-binding cassette subfamily C, member 

7)] for ≤180 mutations simultaneously in NBS has recently been reported (32).

In summary, we describe the use of MALDI-TOF-MS for detecting a hemizygous deletion 

by use of an internal genomic sequence as competitor. Testing DNA extracted from DBS, we 

found that the assay discriminated all 54 22q11DS samples from control samples. Although 

these results are highly promising, full clinical validation of this MALDI-TOF-MS assay 
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will require testing a large population-based sample of newborn DBS before it can be 

applied to routine newborn screening.
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Fig. 1. Mass spectrograms for 22q11DS sample and sample without 22q11 deletion (healthy 
control)
T, target gene; R, reference gene.
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Fig. 2. Box and whisker (Tukey) plot of median signal ratio at SND *1 and SND *2 for a cohort 
of 10 22q11DS samples and 10 nondeleted samples
Ctrl, control; Pt, patient.
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Fig. 3. 
Signal ratios for samples from 100 unaffected individuals (CT) and 54 patients with 22q11.2 

DS (PT) at (A) SND*1 and (B) SND*2.
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